3.6.6 \(\int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx\) [506]

3.6.6.1 Optimal result
3.6.6.2 Mathematica [A] (verified)
3.6.6.3 Rubi [A] (verified)
3.6.6.4 Maple [B] (verified)
3.6.6.5 Fricas [A] (verification not implemented)
3.6.6.6 Sympy [F(-1)]
3.6.6.7 Maxima [B] (verification not implemented)
3.6.6.8 Giac [F(-1)]
3.6.6.9 Mupad [F(-1)]

3.6.6.1 Optimal result

Integrand size = 35, antiderivative size = 146 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {a^{3/2} (2 A+3 B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}-\frac {a^2 (2 A-B) \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)}}+\frac {2 a A \sqrt {a+a \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \]

output
-a^2*(2*A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(1/2)+a^(3/2)* 
(2*A+3*B)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/ 
2)*sec(d*x+c)^(1/2)/d+2*a*A*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)*sec(d*x+c)^( 
1/2)/d
 
3.6.6.2 Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.73 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \left (\sqrt {2} (2 A+3 B) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}+2 (2 A+B \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(3/ 
2),x]
 
output
(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(Sqrt[2] 
*(2*A + 3*B)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Sqrt[Cos[c + d*x]] + 2*(2*A 
+ B*Cos[c + d*x])*Sin[(c + d*x)/2]))/(2*d)
 
3.6.6.3 Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3440, 3042, 3454, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^{3/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\cos (c+d x) a+a)^{3/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 \int \frac {\sqrt {\cos (c+d x) a+a} (a (2 A+B)-a (2 A-B) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sqrt {\cos (c+d x) a+a} (a (2 A+B)-a (2 A-B) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (2 A+B)-a (2 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3460

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a (2 A+3 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} a (2 A+3 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3253

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {a (2 A+3 B) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 223

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a^{3/2} (2 A+3 B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {a^2 (2 A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}+\frac {2 a A \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{d \sqrt {\cos (c+d x)}}\right )\)

input
Int[(a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^(3/2),x]
 
output
Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((a^(3/2)*(2*A + 3*B)*ArcSin[(Sqrt[a 
]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d - (a^2*(2*A - B)*Sqrt[Cos[c + 
 d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]) + (2*a*A*Sqrt[a + a*Cos[ 
c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]))
 

3.6.6.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
3.6.6.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(273\) vs. \(2(128)=256\).

Time = 22.79 (sec) , antiderivative size = 274, normalized size of antiderivative = 1.88

method result size
default \(\frac {a \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (2 A \cos \left (d x +c \right ) \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \cos \left (d x +c \right )+2 A \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+B \sin \left (d x +c \right ) \cos \left (d x +c \right )+3 B \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+2 A \sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{d \left (1+\cos \left (d x +c \right )\right )}\) \(274\)
parts \(\frac {2 A \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a}{d \left (1+\cos \left (d x +c \right )\right )}+\frac {B \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) a}{d \left (1+\cos \left (d x +c \right )\right )}\) \(314\)

input
int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x,method=_RET 
URNVERBOSE)
 
output
a/d*sec(d*x+c)^(3/2)*(2*A*cos(d*x+c)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos( 
d*x+c)))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*B*(cos(d*x+c)/(1+cos(d 
*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*cos(d*x 
+c)+2*A*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))*(cos(d*x+c)/( 
1+cos(d*x+c)))^(1/2)+B*sin(d*x+c)*cos(d*x+c)+3*B*(cos(d*x+c)/(1+cos(d*x+c) 
))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+2*A*sin(d*x+ 
c))*cos(d*x+c)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))
 
3.6.6.5 Fricas [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.82 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=-\frac {{\left ({\left (2 \, A + 3 \, B\right )} a \cos \left (d x + c\right ) + {\left (2 \, A + 3 \, B\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {{\left (B a \cos \left (d x + c\right ) + 2 \, A a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{d \cos \left (d x + c\right ) + d} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algo 
rithm="fricas")
 
output
-(((2*A + 3*B)*a*cos(d*x + c) + (2*A + 3*B)*a)*sqrt(a)*arctan(sqrt(a*cos(d 
*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - (B*a*cos(d*x + c 
) + 2*A*a)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*co 
s(d*x + c) + d)
 
3.6.6.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)**(3/2),x)
 
output
Timed out
 
3.6.6.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1801 vs. \(2 (128) = 256\).

Time = 0.54 (sec) , antiderivative size = 1801, normalized size of antiderivative = 12.34 \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algo 
rithm="maxima")
 
output
1/4*((2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d* 
x + c) - (a*cos(d*x + c) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c 
) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2* 
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2...
 
3.6.6.8 Giac [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(3/2),x, algo 
rithm="giac")
 
output
Timed out
 
3.6.6.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

input
int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^(3/2) 
,x)
 
output
int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^(3/2) 
, x)